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Abstract. We introduce and discuss a family of site decorations which change local lattice 
features, such as coordination number and planarity, but which may be shown explicitly 
to preserve the usual percolation exponents even in a continuum limit. The continuum 
limit is shown to be equivalent to cell percolation where sites are randomly and indepen- 
dently distributed in space, but where connectivity is determined by a cell structure. We 
further verify conjectured amplitude relationships within lattice families without recourse 
to scaling arguments. 

1. Introduction 

From the study of thermal critical phenomena there is considerable evidence that 
critical exponents depend on the dimension of the problem but not on the details of 
lattice structures within that dimension. Through contact with the Potts model 
(Kasteleyn and Fortuin 1969) and from direct numerical evidence (Gaunt and Sykes 
1983, and references therein) it is believed that exponents in percolation are also 
dependent only on the dimension of the lattice. Unfortunately rigorous calculations 
of percolation exponents have not yet been carried out for any pair of common lattices, 
so that such universality has not yet been proved in any dimension. However, in a 
previous paper (Ord, Whittington and Wilker (1984) abbreviated o w )  we showed 
that bond problems could be decorated in a non-trivial way so as to preserve the 
exponent p while changing the percolation threshold and critical amplitude. In this 
paper we shall show that an analogous family of decorations exists for site problems, 
and verify that these families share the same exponents a, p, y, 6 and v. 

In 0 2 we introduce site decorations and discuss the effect of such decorations on 
the exponent /I. In 0 3 we establish conditions such that site decorations leave the 
exponents a, p, y, S and Y unchanged, and discuss various ‘universal’ constants of 
lattice-lattice scaling. In § 4 we extend the above results to a continuum system. 

2. Site decorations 

We define a complete n-pole to be a complete graph on n vertices and we say that two 
complete n-poles are connected by a transmission line if the two n-poles form K2“,  
the complete graph on 2 n  vertices. We shall call edges joining vertices within a given 
pole pole bonds, and use the term transmission bonds for edges joining vertices on 
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2796 G Ord and S G Whittington 

different poles, We shall decorate a lattice by replacing sites by complete n-poles and 
bonds by transmission lines. A one-dimensional example is illustrated in figure 1. 

If L is a particular lattice, and L" is the n-pole decoration, we consider the following 
surjection of configurations on L" onto those of L. We say that a vertex vj of L is 
occupied if there is at least one occupied vertex in pj where pj is the n-pole corresponding 
to the vertex q. 

- 0 - - - m i  

L? E K3.3 

Figure 1. Example of site decoration in one Figure 2. The complete bigraph K3,3.  
dimension. 

We notice that with this correspondence two adjacent poles in L' (i.e. two poles 
directly connected by a transmission line) are connected if and only if the corresponding 
sites in L are connected. Furthermore configurations of randomly and independently 
distributed sites on L" correspond to random independent configurations on L. The 
site density relation for the projection is 

f ( p )  1 - ( I  -PI". (2.1) 

That is, a site density of p on L' projects onto a density of f ( p )  on L. The above 
observations allow us to state the following result. 

Lemma 1 .  Let L be a lattice with site percolation exponent p and critical site density 
p C e  (0 , l ) .  If L" is a complete n-pole decoration of L then the percolation exponent 
for L' is p and the critical density is the root of the equation 

The reasoning behind the proof of lemma 1 is similar to that of the bond decoration 
case discussed in o w .  Namely P ( p ) ,  the percolation probability, is found to be 
related on the two lattices by the equation 

where c ( p )  and f ( p )  are analytic and non-zero in (0, 1). This guarantees preservation 
of the exponent p provided df/dp14> 0 when d, is the root of f ( d , )  - p c  = 0. (The 
proofs of exponent invariance under site decorations are in general lengthy but 
straightforward. We shall sketch the arguments in most cases; further details may be 
found in Ord (1983).) 

We notice that if L is the covering lattice for a planar lattice L,, then L" is the 
covering lattice for L i  where L i  is the lattice L, with every bond replaced by n bonds 
in parallel. If we reduce the connectivity of the poles then the covering property of 
the lattice is destroyed and the problem no longer has a bond equivalent. However, 
we shall see that this does not affect the percolation exponents. 

An interesting feature of n-pole decorations is the fact that in clusters which span 
more than a single n-pole, by which we mean clusters which include sites of more 
than one n-pole, the pole bonds are redundant. This fact is illustrated in the following 
lemma. 
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Lemma 2. Let w be a collection of vertices in L" with a single component section 
graph G and pole bond set BP. If w contains vertices from more than a single pole 
then BP does not contain a cut set of G. 

This may be proved by noticing that any two vertices on a pole are connected by 
a path to an adjacent pole provided that the section graph G contains a vertex of that 
pole. 

The above lemma suggests that we may modify the pole bond structure of an n-pole 
decoration without affecting its critical exponent. For example we may form a minimal 
n-pole decoration as follows. We call an n component graph of n vertices a minimal 
n-pole. Two minimal n-poles f i i  and fij are said to be connected by a transmission 
line in a graph G if the section graph induced in G by the vertices of fii and fij is the 
complete bigraph K,, (figure 2). We notice that minimal n-poles have the same 
projected density function (2.1) as complete n-poles. Furthermore, we notice that if 
LF is the decoration of L by minimal n-poles, then there is a one-to-one correspondence 
between configurations on L" and LF. Thus any configuration on LF may be obtained 
from the same configuration of sites on L" by the removal of all pole bonds from L". 
However, by lemma 2, removal of pole bonds from a configuration on L" cannot affect 
clusters of size N > n. Thus the percolation probabilities on the two lattices at the 
same site density are identical, and lemma 1 also holds for minimal n-pole decorations. 

The lattices L" and LF represent 'extremes' of n-pole decoration in the following 
sense. Let L" be a decoration of LF by the addition of any set of pole bonds (excluding 
double bonds) then Lg c L" c L", and by the containment theorem (Fisher 1961) the 
percolation probability on L" is bounded above and below by the percolation prob- 
abilities on LF and L", respectively. Since these are identical the percolation probability 
on L" is identical to the percolation probability on LF and so lemma 1 holds for any 
n-pole decoration. 

The above irrelevance of pole bonds to percolation is a good example of the fact 
that critical behaviour tends to depend not on 'local' connectivity of a lattice, but on 
more 'global' structure. In fact, one may generalise n-pole decoration further to 'patch' 
decoration which may have considerable local structure that is essentially irrelevant 
to critical behaviour. That is, we define an n-patch to be a finite n-rooted graph (not 
necessarily connected). We call the bonds of an n-patch patch bonds. We form an 
n-patch decoration of L in the following way. We replace each vertex of L by 
an n-patch, and each bond in L by a transmission line joining the 2n roots of 
neighbouring n-patches (figure 3). 

Since only root points of n-patches are directly connected to neighbouring patches, 
patch bonds are clearly irrelevant to the percolation probability of root vertices. Thus 
the actual patch structure affects the percolation probability only through the probability 
that a randomly chosen site is connected to an occupied root vertex. This probability 
is the analogue of the association probability in bond decoration (see o w ) .  For a 
finite patch this association probability h ( p )  is a polynomial and, as in the bond 
percolation case, only affects the amplitude of the singularity. 

Finally, we may generalise this further to a stochastic patch decoration where the 
number of root vertices in a given patch is governed by independently chosen random 
variables from some distribution function g(n) ,  n = 1,2,3, .  . . . In this case the trans- 
mission line between an n-pole and an m-pole is just the complete bigraph K,,,". As 
in the case of stochastic bond expansions, stochastic pole decoration, excluding 0-poles 
and infinite poles, does not change the exponent p (cf Ord and Whittington 1982). 
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Figure 3. An n-patch decoration in two dimensions. 

3. Decorations and exponent relations 

In this section we shall consider the effect of site decorations on the exponents a, p, 
y, S and v using series expansion techniques. We shall specifically consider a complete 
n-pole example where the pole bonds and sites form complete graphs on n vertices. 
The results may be readily extended to more locally complex decorations provided 
that the decorations remain finite. 

Let us consider percolation on a lattice L where we expect to find critical behaviour. 
The cluster numbers on the lattice are defined by: 

n,( p )  = expected number of clusters of size s on the lattice (per site) = p'D,(q) 

where Ds(q)  is the so-called 'perimeter' polynomial (see e.g., Stauffer 1979) which 
summarises the configurational data for s-clusters on L. The total number of clusters 
per occupied site on the lattice is then 

1 
K ( P ) = p C  S n d p )  =CP"-'Ds(q) .  I 

Let us assume that 

K ( p )  - Alp-pc12-" 

describes the behaviour of K (  p )  in the vicinity of the critical density. 
Similarly we write 

1 

P s  
P(P) = 1 --c sns(p) = 1 - R ( p )  - B(p-p , lP  P + Pc', p a 0  

and 

(3.1) 

(3.2) 

which define the exponents p, y and S. 
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To define the exponent v we choose an arbitrary origin ( 0 )  on L and consider the 
indicator function 

if r is connected to o given that o is occupied 
7 7 L ( r ) =  I' 0 otherwise. 

The pair-connectedness function is then 

CL(C P) = ( ? L ( r ) ) P F  

where the expectation is over all configurations of density p containing the origin and 
pF is the fraction of sites in finite clusters. The mean-square displacement of sites 
connected to the origin is then 

and we assume 

5(p)-501P-Pcl-y~ v B 0. (3.4) 

In order to investigate the relationship between these quantities on L and the 
analogous quantities on L" we consider an arbitrary s-cluster on L". Any such cluster 
corresponds to a cluster of unique size js s on L. We may then write the perimeter 
polynomial of s-clusters on L" as a sum of terms arising from the different possible 
contributions from L, i.e., 

m q ) =  i ";). 

Here & ( q )  is the contribution to E s ( q )  due to s-clusters that project onto j-clusters 
on L. However, forj-clusters on L we have: 

where gj, is the number of animals of size j and perimeter t on L. g,, also represents 
the number of 'pole animals' on L" with j poles and t perimeter poles. On L" each 
perimeter pole has a weight of 4". Furthermore each 'occupied' pole contributes 
configurationally due to its internal perimeter sites, i.e., 

where q'"-' represents the internal perimeter sites in 'occupied' poles and Cf is the 
number of ways of distributing s sites among j poles so that no pole is empty. The 
factor l / n  accounts for normalisation per site (as opposed to per pole). The generating 
function of the Cf is just 

Q ( x )  = ( n x +  ( l ) x 2 + .  . . + ( " ) x n ) i  n = k=j 2 C ~ x k .  (3.7) 

Comparing (3.6) and (3.5) we may write 

. I) j (q) = (Cf /n)q '"- 'Dj(qn) .  (3.8) 
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Thus using (3.1) we may expand k ( p )  for the lattice L" as 

R ( p )  = p - ' C  Q P )  =c f i s (q)P5-I  
S S 

Thus 

where f( p )  = ( 1  - 4 " ) .  
In a similar way one can show that 

&PI = N A P ) )  

(3.9) 

(3.10) 

(3.11) 

(3.12) 

where the tildes denote quantities evaluated on L'. Using slightly different techniques 
(see appendix) one can also show that 

&PI  = S ( f ( P ) ) + O ( W P ) ) .  (3.13) 

In o w  it was shown that a sufficient condition for the preservation of exponents 
under functional composition was that f( p) be analytic and strictly increasing at p* 
where p* is the root of the equationf( p*)  - p c  = 0. These conditions are clearly satisfied 
for any p C €  ( 0 , l )  and we conclude that the decorated lattice quantities of equations 
(3.11), (3.12) and (3.13) give rise to the same exponents a.. . Y as do the respective 
functions on L. 
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To investigate the amplitudes of the singularities we expand (3.11) as follows; 
denoting site density on Lfi by d we have 

A=- - f ( d c )  ( f (d, ) )2-”A.  
nd, 

(3.14) 

In a similar manner we may calculate the other amplitudes. The results may be 
summarised as follows. 

Lemma 3. Let L be a d-dimensional lattice with percolation threshold p c  and critical 
exponents a,. . . , Y as defined in (3.2)-(3.6). The percolation threshold on L” is then 
the root d,  E [0,1] of the equation 1 - (1 - d,)” - p c  = 0. Furthermore if p C €  (0,l) then 
the exponents of Lfi are identical to those of L and the critical amplitudes are given by 

(3 .15)  

The relationships between critical amplitudes on the decorated lattices given above 
allow us to check the universal amplitude ratios. These amplitude ratios are usually 
derived from the hypotheses of scaling and universality (see Aharony 1980). However, 
we shall find that in the case of site decorated lattice families we need only certain 
exponent equalities for the ratios to be universal within families. The ratios in question 
are: 

R,  = C’MB8-’ 

R,= a ( 2  - a)( 1 - a)A+B-’C+ 

and 
( R ~ ) d = ~ ( l - ~ ) ( 2 - a ) A + ( ~ ~ ) d .  

(3.16) 
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For example, on the decorated lattice we have from (3.15) 

Since in general f(d,)  # 1 the amplitude ratio R, is universal within a lattice family 
provided y = p(6 - 1). Similarly one has 

R C  
6, = f’( d c ) 2 - U  -2P-  Y 

or R, is universal provided 2 - a = y + 2p, and 

d, =f( dc)Z-a-d”R, 

or R, is universal provided dv = 2 - a. 
In six dimensions the last of equations (3.16) is replaced by (Aharony 1980) 

K ( p ) ( 5( P ) 1 = D o l  In I ( P - P E )  1 P c  t o  I I (3.17) 

with Do being universal and to being non-universal. However, both relations (3.16) 
and (3.17) are satisfied by lattice families which suggest that to is coqstant within 
families. 

In cases where p ,  = 1 (e.g., 1 - d percolation) lemma 3 is no longer useful; however, 
a weaker form may be stated using the renormalised exponents of Suzuki (1974), namely 

6 

p * = P / v  ? = y / v  (2- & )  = (2- a)/ v and s = 6. 

Corollary. If the lattice L is such that p c =  1 and scaling relations (3.11)-(3.13) hold, 
then the decorated lattices share identical renormalised exponents. 

This result may be inferred from relations (3.11) and (3.12) by expandingf(p) about 
p = 1. The vanishing of the first ( n  - 1) derivatives of f ( p )  at p = 1 increases the 
exponents p, y, ( 2 - a )  and v by a factor of n while leaving 6 unchanged. The 
renormalised exponents are thus unchanged by the decoration. 

It is interesting to note that the weaker universality of the corollary applies directly 
to one-dimensional percolation, whereas all common higher-dimensional lattices obey 
the stronger universality of lemma 3. 

4. A continuum limit 

The above lemma suggests that, at least with respect to site decorations, critical 
exponents are universal. In fact, there appear to be only two possible ways to change 
exponents with site decorations. From the above lemma if p c =  1 then d,= 1 and 
f(d,) = 0. This reduces the critical amplitude of the decorated lattices to zero and 
leads to a change of critical exponents by integer multiples (as found in some tangential 
approaches to critical lines, see e.g., Griffiths and Wheeler (1970)). 

Another possibility is to allow infinite decorations. Although we shall show that 
we may allow the n-pole decoration to become infinite in such a way as to preserve 
the exponents, this is not the general case for infinite patch decorations. 

Imagine a sequence of decorations of the quadratic lattice with first and second 
neighbour interactions, denoted SJ2. We structure the sequence of decorations so that 
the vertex set of each member can be arranged in such a way as to be a refinement of 
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the previous member (figure 4). That is, suppose we start with a nearest neighbour 
distance b = 1 on SJ5 and at the nth member of the sequence we have b ( n )  = ($)". This 
will require the number of sites per decoration to be N (  n) = 3'". If S" is the quadratic 
lattice with all connections up to and including x lattice constants present, and Lk is 
fl decorated with 32k-poles as above we have 

~ 3 '  Ln ~ z J I  3" 

where the containment symbols indicate identity in vertex sets and strict containment 
in bond sets. (To compare lattices we make the nearest-neighbour distance on S3' and 
SZA3", b ( n ) = ( $ ) " . )  As n + m  percolation on S3' and S2J23" approach continuum 
percolation of overlapping discs of radii 1 and 2&, respectively. Although it is not 
known whether percolation exponents change along these two sequences, particularly 
in the limit n +CO, by lemma 3 we know that the sequence { L"} has identical exponents. 

To compare members of [L"]  we denote site density per unit area by p. If d is the 
density on L" then p = d32". 

Figure 4. SJ2 is a square lattice with first and second-neighbour bonds. L9 is a pole 
decoration of this lattice (only sites are shown) such that the sites of the decorated lattice 
form a square array in the plane. 

Consider the sequence of functions defined by: 

P n ( p ) =  P'"'(d =p/3'")= PIo'[l - ( 1 - ~ / 3 * " ) ~ ~ ' ]  

where we have n 2 In p/ln 3, and P(") is the percolation probability on the complete 
32" decoration of SJ'. 

If we assume P'' ' (p) continuous on [0,1] then we have for fixed p 

lim P n ( p )  = lim PcO)[ l  -(1 - p / 3 2 " ) 3 2 " ]  
n-m n - c c  

where P ( p )  is the limiting percolation probability. Since P,,(p) converges to 
Pco'( 1 - e-P) pointwise on [0,1] and since PcO) is assumed continuous we need only 
establish that the function F ( p )  = 1 -e-'' is such that F ( p , )  = d,  has a unique solution, 
where d,  is the percolation threshold on L'O), and that F'(p,)  # 0. This will show that 
the exponent p for the continuum is the same as for the lattice. However, e-p is strictly 
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decreasing on [O,+OO) so that F ( p )  is strictly increasing on that interval. Thus for 
dcE [0, 1) the solution is unique and F'(p , )  # 0. 

We thus see that the derived continuum problem with percolation probability P ( p )  
has a percolation exponent ( p )  identical to that of the parent lattice. We may also 
use the arguments of D 2 to confirm the preservation of a, 'y, S and v into the continuum. 
Furthermore, we may extend the arguments to higher dimensions and verify the 
preservation of the constants R,, R ,  and R,. 

The above sequence of lattices can be regarded as approximations to the limiting 
case of cell percolation on a Bravais lattice. By cell percolation we mean the following. 
Consider a Bravais lattice p, and partition space into Wigner-Seitz cells about the 
lattice points. Consider two cells to be adjacent in a percolation sense if the enclosed 
sites of the lattice p share a common bond. Now consider a random independent 
distribution of points in the space partitioned by the Wigner-Seitz cells of p. Connect 
those points that are in adjacent cells. This cell percolation is the limiting case of the 
pole decorations mentioned above. We note that cell percolation allows for multiple 
occupancy and random placement within cells, and that the critical behaviour does 
not depend on any assumed connectivity within cells. We call a decoration limit 
problem of a Bravais lattice B a cell-equivalent problem, and the above considerations 
lead to the following result. 

Lemma 4. Let G be a cell-equivalent problem for a Bravais lattice B with critical 
density pCe (0,l) .  The critical density on G is then p c  = -In( 1 - p c )  and the exponents 
a. . . v on G are identical to those on By with critical amplitudes given by equations 
(3.15) with f( p )  = 1 - eCP. 

5. Discussion 

We have shown that one may use site decorations to construct lattice families, with 
predictably varying percolation thresholds and critical amplitudes, in which the 
exponents remain unchanged. These families include planar, non-planar, covering 
and non-covering lattices as well as cell percolation, which allows for multiple 
occupancy and random placement within cells. We have also established that the 
universal amplitude ratios are constant within families provided only that the correa 
sponding exponent relations hold. 

Appendix 

In the following we consider percolation on a d-dimensional hypercubic lattice L with 
nearest-neighbour distance bo = 1. We shall compare this to percolation on a complete 
n-pole decorated lattice Lfi .  For convenience we consider values of n such that 
n = (2no+ for some integer n o 3  1. For such n we may choose a nearest-neighbour 
distance b, = (2n0+ l)-' on L". We may then regard L~ as a refinement of L in which 
one in every 2n0+ 1 vertices in L" corresponds to a vertex in L (figure 4). 

We choose an arbitrary origin in L and denote the set of vertex coordinates by 

V = { R = ( Z I , I z  , . . .  Id)1l1 ,... l d e Z ) .  

For brevity we identify a vertex in L by its position vector R, and a vertex in Lf i  by 
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an ordered pair (R, S )  where the vector S ranges over the set 

and where the position of (R, S) is just R + S. 

of occupied sites. We then define the indicator function: 
Denote by F the event that the origin is occupied and contained in a finite cluster 

if (R, S) is connected to the origin in L" given F 
otherwise. 

For any given configuration on L" we consider the configuration on L obtained by 
occupying only those positions R for which there is at least one occupied vertex in 
the pole (R, S )  in L", Random, independently distributed configurations of occupied 
sites at density d on L" generate random independently distributed configurations on 
L with site density p = 1 - (1 - d)" .  The indicator function for L can thus be written 

if vLfi(R, S) > 0 

otherwise. 
S TL(R) = 

Since all vertices on a given complete n-pole are equivalent with respect to all 

( A 2 )  

neighbouring sites we have 

(TLA(R, S,))=(TL'(R, sj)) j = 1, . . . , n. 

Furthermore, from 1 we have T/L~(R, S) = 1 iff T/L(R) = 1 and both (R, S) and (0,O) 
are occupied, so that 

(TL~~(R,  SI) = (TL(R)) xPr{(R, S )  and (0,O) OccupiedhdR) = d o )  = 1) 

= (TL(R))d:  ( A 3 )  

where the left-hand side is evaluated at site density d and the right-hand side is 
evaluated at site density p = 1 - (1 - d ) "  with dp = d / p .  

The expected size of the cluster at the origin, given F, is then 

SLfi(d) ( T L ' ( R ,  
R S  

= nd; c (TdR))  
R 

= nd;SL( p ) .  

Thus 

5 : w  = [nd:SL( p11-l c c (R + s)2(TL'(R, S ) )  
R S  

= [ n d : s L ( p ) i - ( ;  ~ ~ : R ~ M R ) ) + c  R S  ( s ~ + ~ R s  cos m ( T L u w : )  

= 5 t ( P ) + E n S L ( P ) l - ' c c  ( S 2 + 2 R S  cos @ R S ) ( T L ( R ) )  
R S  

where gRS is the angle between R and S. 
The first term in the sum on the right-hand side is bounded by the largest value of 

S2, namely: Skax = [dn; / (2no+ 1)]2'd. The second term, when summed, is zero by 
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symmetry. (For other lattices in which this is not the case one may easily show that 
the term, while non-zero, is less singular than [*( p )  for v > 0.) 

We thus have 

5 2 w  = 52(P)+O(O 
and since the two correlation lengths are related by functional composition of a smooth 
increasing function, they share the same exponent v provided pEe (0, 1 ) .  
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